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Abstract
We consider a spin 1/2 charged particle on the Lobachevsky plane subjected
to a magnetic field corresponding to a discrete system of Aharonov–Bohm
solenoids. Let H + and H− be the two components of the Pauli operator for
spin-up and -down, respectively. We show that neither H + nor H− has a zero
mode if the number of solenoids is finite. On the other hand, a construction
is described of an infinite periodic system of solenoids for which either H + or
H− has zero modes depending on the value of the flux carried by the solenoids.

PACS number: 03.65.−w
Mathematics Subject Classification: 81Q05, 81Q10

1. Introduction

Zero modes (wavefunctions of a quantum-mechanical Hamiltonian at zero energy) have
applications to a wide range of branches of physics. In particular, the following areas are
mentioned in [5] with connection to zero modes: chiral symmetry breaking in (1 + 1)-
space-time quantum electrodynamics, edge states along the boundary of a disk threaded
by a magnetic flux, singular contributions to the Hall conductance from electrons hopping
on a square lattice in the presence of a uniform magnetic field, superconductivity of a
cosmic string, localization of a fractional charge at a domain wall in a charge-density wave,
induction of a persistent mass current in narrow-gap semiconductors, surface (or edge) states
in a superconductor with a special symmetry, edge states in nanographite ribbon junctions,
itinerant-electron ferromagnetism in the repulsive Hubbard model, random matrix theory and
Anderson localization (see an extensive bibliography in [5, 13]). In all the cases, the appearance
of zero modes leads to quantum fluctuations with important physical consequences.

We dwell on zero modes in the Hofstadter problem related to the Hall conductance
quantization in a two-dimensional electron system [14]. In this case zero modes cause a
topological singularity of the magnetic bands, and as a result, the Hall coefficient changes
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its behaviour from electronlike to holelike as the Fermi level crosses the zero energy. It is
important to know how this behaviour is altered by the variation of the system parameters.
In particular, it is interesting to study the impact of the magnetic field inhomogeneity and of
the system curvature on the appearance of zero modes. Additional Aharonov–Bohm fluxes
are frequently used tools to create magnetic field inhomogeneities [22]. Their influence on
appearance of zero modes in a plane system was analysed in detail in [13]. On the other hand,
the simplest way to take into account a non-trivial curvature of such a system is achieved by
considering systems of constant curvature. Since complete surfaces of constant curvature have
distinct topological properties depending on the curvature sign and, therefore, they require
distinct mathematical tools for investigating the zero modes of Pauli operators, we restrict
ourselves to a complete surface of negative constant curvature, i.e. to the Lobachevsky plane.

It is worth noting that the integer quantum Hall effect on the Lobachevsky plane was
investigated with the help of non-commutative geometry in [4, 6, 7]. Moreover, an interesting
model of the fractional quantum Hall effect has been proposed recently in [16]. It is based
on the idea that, due to the effect of the strong electron–electron interaction, a single two-
dimensional electron ‘sees’ the surrounding geometry as curved, with the moving electrons
being arranged in a lattice in the hyperbolic plane. As a result, the single-electron problem on
the Lobachevsky plane may be used to simulate the multi-electron problem on the Euclidean
plane. On the other hand, two-dimensional electron systems with nontrivial curvature are
technologically realizable [17] and widely studied both theoretically and experimentally [21].
In particular, surfaces of negative curvature can be used for describing the electron motion in
the hyperfullerenes [19].

Being motivated by the above-mentioned problems, we consider a spin 1/2 charged
particle on the Lobachevsky plane subjected to a time-independent magnetic field
corresponding to a discrete system of singular flux tubes perpendicular to the plane. We
are interested in the zero modes of the Pauli operator

P =
(

H + 0
0 H−

)
,

where H + and H− are the spin-up and spin-down components, respectively. Since both H +

and H− are positive operators, zero modes are automatically ground states of the quantum
system.

The current paper extends some results known for the Euclidean plane to a non-flat space
having a constant curvature equal to −1. These results are based on the Aharonov–Casher
observation [1] that the Pauli operators for spin 1/2 particles in a magnetic field are related to
factorable Schrödinger operators. It is well known that even in the case of a uniform magnetic
field, the spectrum of the magnetic Schrödinger operator H changes drastically when changing
the curvature of the base plane from zero to a constant negative value [8]. In particular, if the
strength of the magnetic field is weak enough (more precisely, if the magnetic flux through a
triangle with zero angles is less than one quantum), then the spectrum of H is purely absolutely
continuous in contrast to the zero curvature case in which the spectrum is pure point. We
show that the Pauli operator with a finite number of Aharonov–Bohm fluxes exhibits a similar
behaviour: it has no zero modes on the Lobachevsky plane, whereas in the Euclidean case, the
zero modes may exist in a finite system of solenoids, as analysed in [3]. In this connection, it
is interesting to note that the constant negative curvature exerts no effect on the Berry phase for
the zero-range potential well moving in the uniform constant magnetic field [2]. Furthermore,
it has been shown in [12] that zero modes occur if the solenoids are arranged in an infinite
plane lattice, and some generalizations and additional details of this result can be found in
[13, 18]. Our theorem 8 is an extension of such results to the case of the Lobachevsky plane.
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As was already mentioned, the approach we use is based on the Aharonov–Casher ansatz.
This makes it possible to employ the theory of analytic functions when constructing the zero
modes. Let us now describe the problem in more detail and introduce the basic notation.
Some additional details related to this method are contained, e.g. in [9, 10].

Let M be an oriented Riemannian two-dimensional manifold with a conformal metric

ds2 = dz dz̄

λ2(z, z̄)
,

where λ2(z, z̄) > 0 (the function λ2(z, z̄) is called the Poincaré metric). The corresponding
area 2-form is

dσ = dx ∧ dy

λ2(z, z̄)
= i

2

dz ∧ dz̄

λ2(z, z̄)
.

By definition, a magnetic field on M is an exact 2-form b = B dσ , where the real-valued
(generalized) function B is called the strength of the field b. Since b is exact, we have b = da

where the 1-form a = ax dx + ay dy = az dz + az̄ dz̄ is a vector potential of b. We set

az = 1
2 (ax − iay), az̄ = 1

2 (ax + iay).

Hence,

λ−2B = ∂xay − ∂yax = 2

i
(∂zaz̄ − ∂z̄az).

We shall suppose that

ax, ay ∈ L1
loc(M, dσ) ∩ C∞(M\�),

for some discrete subset � of M. Moreover, we suppose that each point of � is a point of
discontinuity of ax or ay . Under these hypotheses, � is determined by a in a unique way.
In particular, ax or ay may be the imaginary and the real part of a meromorphic function,
respectively.

Let us define the following operators in L2(M, dσ) with the domain C∞
0 (M\�):

Px = −i∂x − ax ≡ −i∇x, Py = −i∂y − ay ≡ −i∇y,

∇z = 1
2 (∇x − i∇y) = ∂z − iaz, ∇z̄ = 1

2 (∇x + i∇y) = ∂z̄ − iaz̄,

T± = Px ± iPy = −i∇x ± ∇y.

Let us consider the quadratic form

h±
max(f ) =

∫
M

λ2|T±f |2 dσ

with the domain

Q
(
h±

max

) =
{
f ∈ L2(M, dσ); ∇xf,∇yf ∈ L1

loc(M\�, dσ), and
∫

M

λ2|T±f |2 dσ < ∞
}

.

The quadratic form h±
max is closed and defines a self-adjoint operator H± in L2(M, dσ). On

C∞
0 (M\�), we have

λ2T+T− = H−, λ2T−T+ = H +,

and

λ−2H± = P 2
x + P 2

y ∓ λ−2B.

Clearly, both H + and H− are positive operators.
Suppose that in the sense of distributions

λ−2B = ∂2ϕ

∂x2
+

∂2ϕ

∂y2
≡ �ϕ
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where ϕ is a regular distribution (a locally integrable function). Then for the vector potential
one can choose

az̄ = i∂z̄ϕ, az = −i∂zϕ,

and the zero modes of H + (resp. H−), i.e. L2-solutions ψ �= 0 to the equation H±ψ = 0,
have the form

ψ(z, z̄) = exp(∓ϕ(z, z̄))f (z, z̄),

where f is a holomorphic (resp. antiholomorphic) function on M\�.

2. Finite number of Aharonov–Bohm solenoids

In what follows M will be the Lobachevsky plane which we shall model as the disc

D = {z ∈ C; |z| < 1} with λ = 1 − zz̄

2
.

Equivalently, one could model M as the upper half-plane C
+ = {z ∈ C; Im z > 0} with

λ = (z − z̄)/(2i).

Proposition 1. Let B be the magnetic field on M corresponding to a finite family of
Aharonov–Bohm solenoids with non-zero fluxes. Then H± has no zero modes.

Proof. Let us consider the operator H +; the proof is similar in the case of H−. Let
ak ∈ D, k = 1, . . . , n, be a finite set of points. Consider the function

ϕ(z, z̄) =
n∏

k=1

|z − ak|θk .

Then

� log(ϕ) = 2π

n∑
k=1

θkδ(z − ak),

and the corresponding field strength equals

B(z, z̄) = π

2

n∑
k=1

θk(1 − |ak|2)2δ(z − ak).

Let us note that for the field B = π
2 θ(1 − |a|2)2δ(z − a), the flux equals

� = 1

2π

∫
M

B dσ = θ.

As usual, due to the gauge symmetry one can assume that 0 < θk < 1 for all k. Let us suppose
that H + has a zero mode ψ . Then

ψ(z, z̄) =
n∏

k=1

|z − ak|−θkf (z), (1)

where f is holomorphic on the domain D\{a1, . . . , an}. Since ψ ∈ L2(D, dσ ), the function
f cannot have a pole nor an essential singularity at any of the points a1, . . . , an, and therefore,
f has an analytic extension to the whole domain D. Moreover, from (1) one deduces that
|f (z)| � const|ψ(z, z̄)| on D and therefore f ∈ L2(D, dσ ). Since this means that f 2 is
a holomorphic function on D belonging to L1(D, dσ ), the following lemma completes the
proof. �
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Lemma 2. Let f be a holomorphic function on D. If f ∈ L1(D, dσ ) then f = 0.

Proof. Let f (z) = ∑∞
n=0 anz

n and suppose that the series converges in D. Denote z = |z| eiϕ .
The functions e−inϕf (z) belong to L1(D, dσ ) for all n ∈ Z. Moreover, for n � 0 we have∫

D

e−inϕf (z)dσ = lim
r→1−

∫
|z|<r

e−inϕf (z)dσ = 8πan lim
r→1−

∫ r

0

ρn+1

(1 − ρ2)2
dρ.

Since the last integral diverges as r → 1−, it necessarily holds an = 0. �

Remark 3. On the Euclidean plane R
2, the following Aharonov–Casher theorem is valid [1]:

if B(x, y) is a ‘regular’ function with a compact support then dim Ker(H + ⊕ H−) = 〈|�|〉,
where

� = 1

2π

∫
R

2
B dx dy

is the magnetic flux, and for x � 0,

〈x〉 =


[x], if x /∈ Z,

x − 1, if x ∈ Z and x > 0,

0, if x = 0,

(here [x] stands for the integer part of x). The following example shows that an analogous
statement is not true for the Lobachevsky plane.

Let M = D and B(z, z̄) = λ2(|z|)F (|z|), where

F(r) =
{

B̃, if 0 � r � r0,

0, if r0 < r < 1,

(here B̃ is a positive number and r0, 0 < r0 < 1, is fixed). To find a function ϕ such that
�ϕ = F , one has to solve the equation

1

r

d

dr
r

d

dr
ϕ(r) = F(r).

It is easy to show that we can set

ϕ(r) =


B̃

4
r2, if 0 � r � r0,

B̃

4
r2

0 +
B̃

2
r2

0 log

(
r

r0

)
, if r0 < r < 1.

It is clear that for every B̃ > 0, we have

inf
0�r�1

exp(∓ϕ(r)) > 0.

This implies that if f exp(∓ϕ) is square integrable then the same is true for f . By
lemma 2, for every function f �= 0 which is holomorphic (antiholomorphic) on D it holds
f exp(∓ϕ) /∈ L2(D, dσ ). Hence dim Ker(H + ⊕ H−) = 0. On the other hand, the flux

� = 1

2π

∫
D

B dσ = 1

2π

∫
D

F(r) dx dy = B̃

2
r2

0

can be an arbitrary positive number. Note that for the Dirac operator on the Lobachevsky
plane, the similar result is obtained in [20].
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3. An infinite system of Aharonov–Bohm solenoids

Here we consider magnetic fields with infinite total fluxes, more precisely, we consider an
infinite set of Aharonov–Bohm solenoids penetrating the Lobachevsky plane in the points of a
discrete set  in such a way that the resulting field is invariant with respect to a discrete group
G of isometries of D. In order to approach the problem more easily, we suppose that the action
of G on D is co-compact which means that the factor space D/G is compact. The construction
of the system of fluxes is as follows. We choose a fundamental domain F ⊂ D with respect
to the action of G, we fix a finite subset K ⊂ F, and we set  = ⋃

g∈G gK. For each κ ∈ K,
we choose a non-integer flux θκ . The resulting magnetic field consists of all Aharonov–Bohm
solenoids penetrating the plane at the points γ ∈ . If γ = gκ , for some g ∈ G and κ ∈ K ,
then the flux corresponding to γ equals θκ .

As an illustration of the Aharonov–Casher method, we start from a short remark where
we discuss a known result concerning a uniform magnetic field on the Lobachevsky plane M.

Remark 4. Suppose that B = const and without loss of generality we can assume that
B > 0. It is known (see [8]) that in this case the spectrum of H± is purely absolutely
continuous if and only if B � 1/2. If it is the case then the spectrum consists of the
semi-axis [1/4 + B2 ∓ B, +∞[. Otherwise, in addition to the semi-axis, the spectrum of H±

contains infinitely degenerate eigenvalues En = B(2n + 1 ∓ 1) − n2 − n, where n ∈ Z and
0 � n < B − 1/2. From here one deduces that the operator H + has zero modes if and only
if B > 1/2 while H− � 2B never has zero modes. As a demonstration of the effectiveness
of the Aharonov–Casher method let us re-establish the observation concerning zero modes
of H +.

First, we find a function ϕ defined in D such that

�ϕ = Bλ−2.

Assuming that ϕ depends on |z| only, we arrive at the equation

1

r

d

dr
r

d

dr
ϕ(r) = Bλ(r)−2.

Its solution reads

ϕ(r) = −B log(1 − r2).

The operator H + has a zero mode if and only if there exists a function f �= 0 which is
holomorphic on D and such that

(1 − r2)2B 1

(1 − r2)2
|f (z)|2 ∈ L1(D, dx ∧ dy). (2)

It is clear that in the case when B > 1/2 all functions f which are holomorphic on D and
bounded on D satisfy condition (2). On the other hand, suppose that a function f (z) is
holomorphic on D and satisfies condition (2). Denote g(z) = f (z)2 = ∑∞

m=0 amzm. Then for
every n ∈ Z, n � 0,∫ 2π

0

∫ 1

0
(1 − r2)2B 1

(1 − r2)2
g(z) e−inϕr dr ∧ dϕ

= 2πan lim
ρ→1−

∫ ρ

0
(1 − r2)2B rn+1

(1 − r2)2
dr. (3)

By assumption, the integral on the lhs in (3) is finite while the integral on the rhs converges
as ρ → 1− if and only if B > 1/2. Hence f (z) necessarily vanishes everywhere on D if
B � 1/2.
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Let us now return to the construction of a symmetric lattice of Aharonov–Bohm fluxes.
We shall need the following lemma.

Lemma 5. Let G be a discrete co-compact group of isometries acting on the disc D equipped
with the Poincaré metric ds2, and let F be a precompact fundamental domain for G. Choose
an element zγ in each domain γF, γ ∈ G. If d � 2, then∑

γ∈G

(1 − |zγ |2)d < ∞. (4)

Proof. It is sufficient to prove the lemma for d = 2. Let us fix ε, 0 < ε < 1/2. Consider a
finite family {Sj }mj=1 of nonempty measurable mutually disjoint subsets Sj ⊂ F such that

(1)
⋃m

j=1
Sj = F ,

(2) diam Sj � ε,∀j ,
(3) σ(Sj ) = 1

m
σ(F ),

(σ stands for the area). Denote by mjγ (resp. Mjγ ) the infimum (resp. the supremum) of the
function h(z, z̄) = (1 − |z|2)2 on the set γ Sj . It is sufficient to verify that

m∑
j=1

∑
γ∈G

Mjγ < ∞.

It is convenient to employ the polar geodesic coordinates (ρ, θ) on D centred at z = 0. If
z = r eiϕ , then

r = th
(ρ

2

)
, ϕ = θ.

In these coordinates,

h(ρ, θ) = ch
(ρ

2

)−4
.

From the triangle inequality, it follows that for any couple of points from D it holds

|ρ1 − ρ2| � dist((ρ1, θ1), (ρ2, θ2))

(where dist(·, ·) is the distance in the Lobachevsky plane) and therefore

sup{|ρ1 − ρ2|; (ρ1, θ1), (ρ2, θ2) ∈ γ Sj } � ε.

Since h is independent of θ , we have

Mjγ − mjγ � ε sup

{∣∣∣∣ d

dρ
ch

(ρ

2

)−4
∣∣∣∣ ; (ρ, θ) ∈ γ Sj

}
= 2ε sup

{
ch

(ρ

2

)−4
th

(ρ

2

)
; (ρ, θ) ∈ γ Sj

}
� 2ε sup

{
ch

(ρ

2

)−4
; (ρ, θ) ∈ γ Sj

}
= 2εMjγ .

Consequently,

Mjγ � mjγ

1 − 2ε
� m

(1 − 2ε)σ (F )

∫
γ Sj

h(ρ, θ) dσ
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and so ∑
jγ

Mjγ � m

(1 − 2ε)σ (F )

∫
D

h(ρ, θ) dσ = 4mπ

(1 − 2ε)σ (F )
. (5)

This proves the lemma. �

Remark 6. If the points zγ are congruent modulo G then inequality (4) is well known and it
is true for every discrete group G (see [15, lemma III.5.2]).

Remark 7. Let K = −1 be the Gaussian curvature of the Lobachevsky plane and let g be
the genus of the closed surface D/G. The Gauss–Bonnet formula tells us that

1

2π

∫
D/G

K dσ = − 1

2π
σ(F ) = 2 − 2g.

Hence g � 2 and we have σ(F ) � 4π independently of the group G. Moreover, we can
choose

m =
[
σ(F )

ε

]
+ 1.

With this choice, the rhs of (5) can be further estimated from above by the expression

1

1 − 2ε

(
4π

ε
+ 1

)
which is already independent of G. In particular, for ε = 1/4, we get the upper bound 32π + 2.
In the case of arbitrary d � 2, we have the estimate∑

γ∈G

(1 − |zγ |2)d <
4mπ

(1 − dε)(d − 1)σ (F )
,

where ε < 1/d and the rhs can be again replaced by an expression independent of G.

Recall that the group of motions of D regarded as the Lobachevsky plane is SU(1, 1), the
group of transformations

Az = az + b

b̄z + ā
, where |a|2 − |b|2 = 1.

Let G be a discrete co-compact subgroup of SU(1, 1) and let F be a precompact
fundamental domain of G. Suppose that W(z) is an automorphic form on D of weight 2k, k � 1,
with respect to G, i.e. W(z) is a meromorphic function on D obeying the following condition:

∀A ∈ G, W(Az) = A′(z)−kW(z). (6)

For simplicity, we restrict ourselves to the case when W has only simple poles and zeros. Let
us note that if G is a discrete group then automorphic forms do indeed exist, see for example
[15, chapter III].

We can choose F in such a way that ∂F contains no poles nor zeros of W . Let a1, . . . , an

be the set of all zeros and let b1, . . . , bm be the set of all poles of W in F. It is known that
n > m (see [11, section 49, theorem 4]). Then the function B = θλ−2� log(|W |), θ ∈ R, is
the strength of the magnetic field of a system of Aharonov–Bohm solenoids intersecting the
Lobachevsky plane at the points γ aj and γ bj , where γ is an arbitrary transformation from
G. A solenoid intersecting the plane at γ aj carries the flux θ , and a solenoid intersecting the
plane at γ bj carries the flux −θ .

Using the gauge symmetry we again assume, without loss of generality, that 0 < θ < 1.
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Theorem 8. If kθ � 1, then the operator H +(B) has zero modes. If 0 < kθ < k − 1, then
the operator H−(B) has zero modes.

Proof. We restrict ourselves to the case of operator H +; the proof is similar for H−. To prove
the claim one has to find a function f (z) analytic in D such that the function

ψ(z, z̄) = f (z)|W(z)|−θ

belongs to L2(D, dσ).
One can easily check that

∀A ∈ SU(1, 1), λ(Az,Az) = |A′(z)|λ(z, z̄). (7)

From (6) and (7), it follows that:

|W(z)| = (1 − |z|2)−kr(z, z̄)

where r(z, z̄) is a G-periodic function. Hence

|W(z)|−2θ = (1 − |z|2)2kθ r(z, z̄)−2θ .

It is clear that r−2θ ∈ L1(F, dσ) (W(z) has only simple zeros and so the singularities of
r(z, z̄)−2θ are integrable). Consequently, for every function f which is bounded and analytic
on D, we have ∫

D

|f (z)|2|W(z)|−2θ dσ =
∑
γ∈G

∫
γF

|f (z)|2(1 − |z|2)2kθ r(z, z̄)−2θ dσ

� ‖f ‖∞
∫

F

r(z, z̄)−2θ dσ
∑
γ∈G

(1 − |zγ |2)2kθ

where zγ is a point from γF . By lemma 5
∑

γ∈G(1 − |zγ |2)2kθ < ∞. This completes the
proof. �
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